Synthesis of phage-specific transfer RNA molecules by vibriophage ϕ 149

Ranajit K. Ghosh* and Indrajit Guhathakurta

Biophysics Division, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Calcutta-700032, India

Received 14 June 1983; revised version received 22 August 1983

³²P-Labelled tRNA was isolated from uninfected and phage ϕ 149-infected *Vibrio cholerae* cells. These tRNA preparations were then hybridised with DNA isolated from phage ϕ 149. Significant hybridisation was observed only with tRNA from phage ϕ 149-infected cells. This strongly suggests that infection of classical vibrio with phage ϕ 149 results in the synthesis of phage-specific tRNA molecules.

Phage-specific tRNA

Vibrio cholerae

1. INTRODUCTION

Phages capable of infecting Vibrio cholerae and its different biotypes can be classified into 4 groups depending on their serological [1] and morphological properties [2]. The classical and Eltor biotypes of Vibrio cholerae, which have been responsible for all recent epidemics [1] can be differentiated on the basis of their sensitivity to infection with the group IV phages; group IV phages infect only the classical biotypes of V. cholerae. Phage ϕ 149 is a group IV phage with a linear double-stranded DNA genome having M_r 36 × 10⁶ [3]. The biochemical functions encoded by this molecule have not been identified. In this communication we report that infection of classical vibrios with phage ϕ 149 results in the synthesis of phage-specific tRNA molecules. T₅ [4] and T-even phages [5-7] are the only other systems in which the synthesis of phage-specific tRNA has been reported.

* To whom correspondence should be directed at present address: PHLS Centre for Applied Microbiology and Research, Molecular Genetics Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JG, England

2. MATERIALS AND METHODS

2.1. Cells and phage

Vibrio cholerae Ogawa 154 strain was used to propagate the cholerabacteriophage ϕ 149 and as an indicator host.

Cells were grown in low phosphate nutrient broth [8] at 37°C with shaking (180 rev./min) to mid log phase (about 5×10^8 c.f.u./ml). The cells were infected with phage ϕ 149 at m.o.i. = 0.2, then incubated until complete lysis had occurred (4-5 h). Chloroform (0.5%, v/v) was added to the cell lysate and cell debris removed by centrifugation at $6000 \times g$ at 4°C. Phage particles present in the supernatant were pelleted by centrifugation at 37000 rev./min for 90 min at 5°C (Sorvall Dupont OTD50 ultracentrifuge, A841 rotor), and then resuspended in 0.5 ml 10 mM Tris-HCl (pH 8.0), 10 mM MgSO₄. The phage was subsequently purified by banding in CsCl step gradient (1.3-1.6 g/ml) by centrifugation at 30000 rev./min for 1 h (Sorvall Dupont OTD50 ultracentrifuge AH650 rotor). The recovered phage band was dialysed overnight at 4°C against 10 mM Tris-HCl (pH 8.0), 1 mM EDTA and then stored at 4°C in the presence of small amounts of chloroform.

2.2. Isolation of phage DNA

Phage preparations were extracted 3 times with redistilled phenol (equilibrated with 0.15 M NaCl, 0.015 M sodium citrate, pH 6.0). The phage DNA present in the aqueous phase was dialysed extensively against 15 mM NaCl, 1.5 mM sodium citrate (pH 6.0) and then stored at 4°C at 100-150 µg/ml.

2.3. Isolation of [32P]tRNA

Cells were infected with ϕ 149 at mid-log phase at m.o.i. = 5 p.f.u./cell; 1 mCi 32 P (carrier-free orthophosphate) was added 2 min after infection and the cells incubated at 37°C for a further 25 min. The cells were then rapidly chilled and 0.01 vol. 1 M NaN₃ added. The infected cells were collected by centrifugation at $10000 \times g$ for 5 min and tRNA isolated by phenol extraction and isopropanol fractionation as in [9]. [32 P]tRNA was further purified by gel filtration on Sephadex G-100 columns [10] pre-calibrated with authentic 5 S RNA and tRNA. Isolation of [32 P]tRNA from uninfected cells was done using identical conditions.

2.4. Hybridisation

Hybridisation of $[^{32}P]tRNA$ with denatured DNA from phage ϕ 149 was done as in [11]; 30 μ g DNA was immobilized on each filter and was hybridised with varying amounts of $[^{32}P]tRNA$.

3. RESULTS AND DISCUSSION

³²P-Labelled tRNA isolated from both uninfected and phage ϕ 149-infected cells by phenol extraction and isopropanol extraction (as in section 2) was contaminated with small amounts of 5 S RNA. This contaminant was removed by gel filtration on Sephadex G-100 (fig.1); purified tRNA was recovered from the appropriate pooled fractions by ethanol precipitation. Purified [32P]tRNA was used directly for hybridisation with phage ϕ 149 DNA immobilised on cellulose nitrate membranes. A significant proportion (about 2%) of the tRNA from ϕ 149-infected cells hybridised with purified φ 149 DNA (fig.2). tRNA from uninfected cells failed to show any appreciable hybridisation under identical conditions. These results strongly suggest that the tRNA from ϕ 149-infected cells hybridising with ϕ 149 was not

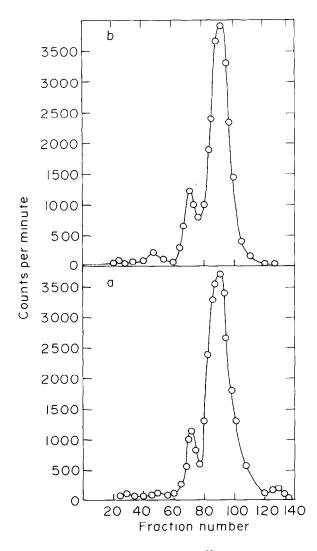


Fig.1. Gel filtration of crude 32 P-labelled tRNA preparations on a Sephadex G-100 column (2 cm \times 150 cm); 0.5 ml crude tRNA preparation was applied to the column and eluted with 1 M NaCl [12] at 10 ml/h; 3.5 ml fractions were collected. The radioactivity contained in $10\,\mu l$ aliquots of each fraction was monitored by liquid scintillation counting. The positions of the major and minor peaks correspond to authentic tRNA and 5 S RNA, respectively. The void volume was reached at fraction 42. (A) tRNA from ϕ 149-infected cells; (B) tRNA from uninfected cells.

of host origin and was transcribed from the phage DNA after infection. Thus, infection of classical *Vibrio* with phage ϕ 149 results in the synthesis of phage-specific tRNA molecules.

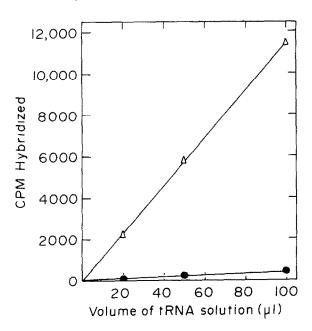


Fig. 2. Hybridisation of ³²P-labelled tRNA (6000 cpm/μl) from φ 149-infected cells (Δ) and uninfected cells (•) with φ 149 DNA; 30 μg φ 149 DNA was immobilised to each filter and hybridised with varying amounts of [³²P]tRNA as in [11].

ACKNOWLEDGEMENTS

We thank Miss Anuradha Sengupta for helpful suggestions in preparation of this paper.

REFERENCES

- [1] Mukherjee, S. (1978) Methods Microbiol. 12, 52-115.
- [2] Chatterjee, S.N., Das, J. and Barua, D. (1965) Ind. J. Med. Res. 53, 934-937.
- [3] Mitra, D. and Basu, S. (1968) Biochim. Biophys. Acta 155, 143-149.
- [4] Scherberg, N.H. and Weiss, S.B. (1970) Proc. Natl. Acad. Sci. USA 67, 1164-1171.
- [5] Desai, S.M. and Weiss, S.B. (1977) J. Biol. Chem. 252, 4955-4941.
- [6] Wilson, J.H., Kim, J.S. and Abelson, J. (1972) J. Mol. Biol. 71, 547-566.
- [7] McClain, W.H., Guthrie, C. and Barrell, B.G. (1972) Proc. Natl. Acad. Sci. USA 69, 3703-3707.
- [8] Roy, N.K., Ghosh, R.K. and Das, J. (1982) J. Gen. Microbiol. 128, 349-353.
- [9] Ghosh, R.K. and Deutscher, M.P. (1978) J. Biol. Chem. 253, 997-1000.
- [10] Chen, M.J., Shaiau, R.P., Hwang, L.T., Vaughan, J. and Weiss, S.B. (1975) Proc. Natl. Acad. Sci. USA 72, 558-568.
- [11] Gillespie, D. and Spigelman, S. (1962) J. Mol. Biol. 12, 829-842.
- [12] Lindahl, T. and Fresco, J.R. (1967) in: Methods in Enzymology (Grossman, L. and Moldave, K. eds) vol.12/A, pp.601-607, Academic Press, London, New York.